Effect of the TBP and water on the complexation of uranyl nitrate and the dissolution of nitric acid into supercritical CO2. A Theoretical Study.
نویسندگان
چکیده
We report theoretical studies on the complexation of uranyl nitrate and the dissolution of nitric acid in supercritical CO2 by TBP. According to quantum mechanical calculations, TBP (modeled by trimethyl phosphate TMP) displays stronger hydrogen-bonding interactions with HNO3 than with H2O, and this has been modeled in force-field calculations. Different combinations of water, TBP, and acid are compared in SC-CO2 and simulated by molecular dynamics (MD), demonstrating the importance of TBP and water concentrations. In MD simulations, which started from "random" mixtures of water, TBP, nitric acid, and uranyl nitrate, complexation of uranyl by TBP is observed and the yield increases with the TBP concentration. TBP molecules are also necessary to dissolve nitric acid in the supercritical phase. Indeed, without TBP, nitric acid alone self aggregates via hydrogen-bonding interactions. Adding water to this solution leads to the formation of water microdomains containing the acid and uranyl salts. The simulations show that a high TBP/nitric acid ratio is needed to fully dissolve the acid in the supercritical phase and to form CO2-philic UO2(NO3)2(TBP)2 complexes. The resulting hydrogen-bonding and solvation patterns are analyzed. The results are consistent with experimental observations and provide microscopic views of this important extraction system.
منابع مشابه
Passage of TBP-uranyl complexes from aqueous-organic interface to the organic phase: insights from molecular dynamics simulation.
The present study reports molecular dynamics simulations for biphasic systems comprising tributyl phosphate (TBP) in dodecane and uranyl nitrate in the aqueous phase, which are key chemical species in the well-known Pu-U extraction (PUREX) process. An attempt has been made to understand the nature of interface and mechanism of 'TBP associated uranyl' crossing under neutral and acidic conditions...
متن کاملThe pH effect on complexation of Alkali metal cation by p-sulfonatocalix (4) arene in aqueous solution
The complexation of Alkali metal cations by the water-soluble p-sulfonic acid calix(4)arenewas thermodynamically characterized using spectrophotometeric data which are consistentwith the formation of a 1:1 complex resulting from electrostatic interactions between thesulfonato groups and alkali metal cations. In this study, we determined the formationconstants (log K) of the complexes and have c...
متن کاملInvestigation of the relationship between drinking water nitrate and bladder cancer in Larestan city from the point of view medical geography
Introduction: Bladder cancer is one of the most common causes of malignancy. The eighth cause of death is due to cancer and is responsible for three percent of the total tumors. The purpose of this study was to evaluate the effect of drinking water nitrate on bladder cancer in Larestan. Methods: This is a descriptive-analytic study in which two types of data are used. Blood cancer data from Lar...
متن کاملSupercritical water impregnation of CuO nanoparticles on silica-support as new catalyst
In our current study, supercritical water impregnation (SCWI) was introduced as a unique catalyst preparation method by employing the high diffusivity property of supercritical water. The method allows nano-particles to place on support surfaces in extremely dispersed conditions. The silica-based nanocatalyst granules for this purpose were prepared by initial impregnation of highly porous silic...
متن کاملModeling and Simulation of Alternative Injections of CO2 and Water into Porous Carbonate Formations
Water alternating gas (WAG) technique is used in the petroleum industry to inject carbon dioxide (CO2) into underground formations either for sequestration or enhanced oil recovery (EOR) processes. CO2 injection causes reactions with formation brine or aquifer and produces carbonic acid, the acid dissolves calcite and changes flow behavior significantly. Modeling and investigating effects of CO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 109 23 شماره
صفحات -
تاریخ انتشار 2005